fast_stm/tvar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
// Copyright 2015-2016 rust-stm Developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use parking_lot::{Mutex, RwLock};
use std::any::Any;
use std::cmp;
use std::fmt::{self, Debug};
use std::marker::PhantomData;
use std::sync::atomic::{self, AtomicUsize};
use std::sync::{Arc, Weak};
use super::result::StmResult;
use super::transaction::control_block::ControlBlock;
use super::Transaction;
/// `VarControlBlock` contains all the useful data for a `Var` while beeing the same type.
///
/// The control block is accessed from other threads directly whereas `Var`
/// is just a typesafe wrapper around it.
pub struct VarControlBlock {
/// `waiting_threads` is a list of all waiting threads protected by a mutex.
waiting_threads: Mutex<Vec<Weak<ControlBlock>>>,
/// `dead_threads` is a counter for all dead threads.
///
/// When there are many dead threads waiting for a change, but
/// nobody changes the value, then an automatic collection is
/// performed.
dead_threads: AtomicUsize,
/// The inner value of the Var.
///
/// It can be shared through a Arc without copying it too often.
///
/// The Arc is also used by the threads to detect changes.
/// The value in it should not be changed or locked because
/// that may cause multiple threads to block unforeseen as well as
/// causing deadlocks.
///
/// The shared reference is protected by a `RWLock` so that multiple
/// threads can safely block it. This ensures consistency, without
/// preventing other threads from accessing the values.
///
/// Starvation may occur, if one thread wants to write-lock but others
/// keep holding read-locks.
pub value: RwLock<Arc<dyn Any + Send + Sync>>,
}
impl VarControlBlock {
/// create a new empty `VarControlBlock`
pub fn new<T>(val: T) -> Arc<VarControlBlock>
where
T: Any + Sync + Send,
{
let ctrl = VarControlBlock {
waiting_threads: Mutex::new(Vec::new()),
dead_threads: AtomicUsize::new(0),
value: RwLock::new(Arc::new(val)),
};
Arc::new(ctrl)
}
/// Wake all threads that are waiting for this block.
pub fn wake_all(&self) {
// Atomically take all waiting threads from the value.
let threads = {
let mut guard = self.waiting_threads.lock();
let inner: &mut Vec<_> = &mut guard;
std::mem::take(inner)
};
// Take all, that are still alive.
let threads = threads.iter().filter_map(Weak::upgrade);
// Release all the semaphores to start the thread.
for thread in threads {
// Inform thread that this var has changed.
thread.set_changed();
}
}
/// Add another thread, that waits for mutations of `self`.
pub fn wait(&self, thread: &Arc<ControlBlock>) {
let mut guard = self.waiting_threads.lock();
guard.push(Arc::downgrade(thread));
}
/// Mark another `StmControlBlock` as dead.
///
/// If the count of dead control blocks is too high,
/// perform a cleanup.
/// This prevents masses of old `StmControlBlock` to
/// pile up when a variable is often read but rarely written.
pub fn set_dead(&self) {
// Increase by one.
let deads = self.dead_threads.fetch_add(1, atomic::Ordering::Relaxed);
// If there are too many then cleanup.
// There is a potential data race that may occure when
// one thread reads the number and then operates on
// outdated data, but no serious mistakes may happen.
if deads >= 64 {
let mut guard = self.waiting_threads.lock();
self.dead_threads.store(0, atomic::Ordering::SeqCst);
// Remove all dead ones. Possibly free up the memory.
guard.retain(|t| t.upgrade().is_some());
}
}
fn get_address(&self) -> usize {
std::ptr::from_ref::<VarControlBlock>(self) as usize
}
}
// Implement some operators so that VarControlBlocks can be sorted.
impl PartialEq for VarControlBlock {
fn eq(&self, other: &Self) -> bool {
self.get_address() == other.get_address()
}
}
impl Eq for VarControlBlock {}
impl Ord for VarControlBlock {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.get_address().cmp(&other.get_address())
}
}
impl PartialOrd for VarControlBlock {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
/// A variable that can be used in a STM-Block
#[derive(Clone)]
pub struct TVar<T> {
/// The control block is the inner of the variable.
///
/// The rest of `TVar` is just the typesafe interface.
control_block: Arc<VarControlBlock>,
/// This marker is needed so that the variable can be used in a typesafe
/// manner.
_marker: PhantomData<T>,
}
impl<T> TVar<T>
where
T: Any + Sync + Send + Clone,
{
/// Create a new `TVar`.
pub fn new(val: T) -> TVar<T> {
TVar {
control_block: VarControlBlock::new(val),
_marker: PhantomData,
}
}
#[allow(clippy::missing_panics_doc)]
/// `read_atomic` reads a value atomically, without starting a transaction.
///
/// It is semantically equivalent to
///
/// ```
/// # use fast_stm::*;
///
/// let var = TVar::new(0);
/// atomically(|trans| var.read(trans));
/// ```
///
/// but more efficient.
///
/// `read_atomic` returns a clone of the value.
pub fn read_atomic(&self) -> T {
let val = self.read_ref_atomic();
(&*val as &dyn Any)
.downcast_ref::<T>()
.expect("wrong type in Var<T>")
.clone()
}
/// Read a value atomically but return a reference.
///
/// This is mostly used internally, but can be useful in
/// some cases, because `read_atomic` clones the
/// inner value, which may be expensive.
pub fn read_ref_atomic(&self) -> Arc<dyn Any + Send + Sync> {
self.control_block.value.read().clone()
}
/// The normal way to access a var.
///
/// It is equivalent to `transaction.read(&var)`, but more
/// convenient.
pub fn read(&self, transaction: &mut Transaction) -> StmResult<T> {
transaction.read(self)
}
/// The normal way to write a var.
///
/// It is equivalent to `transaction.write(&var, value)`, but more
/// convenient.
pub fn write(&self, transaction: &mut Transaction, value: T) -> StmResult<()> {
transaction.write(self, value)
}
/// Modify the content of a `TVar` with the function f.
///
/// ```
/// # use fast_stm::*;
///
///
/// let var = TVar::new(21);
/// atomically(|trans|
/// var.modify(trans, |x| x*2)
/// );
///
/// assert_eq!(var.read_atomic(), 42);
/// ```
pub fn modify<F>(&self, transaction: &mut Transaction, f: F) -> StmResult<()>
where
F: FnOnce(T) -> T,
{
let old = self.read(transaction)?;
self.write(transaction, f(old))
}
/// Replaces the value of a `TVar` with a new one, returning
/// the old one.
///
/// ```
/// # use fast_stm::*;
///
/// let var = TVar::new(0);
/// let x = atomically(|trans|
/// var.replace(trans, 42)
/// );
///
/// assert_eq!(x, 0);
/// assert_eq!(var.read_atomic(), 42);
/// ```
pub fn replace(&self, transaction: &mut Transaction, value: T) -> StmResult<T> {
let old = self.read(transaction)?;
self.write(transaction, value)?;
Ok(old)
}
/// Check if two `TVar`s refer to the same position.
pub fn ref_eq(this: &TVar<T>, other: &TVar<T>) -> bool {
Arc::ptr_eq(&this.control_block, &other.control_block)
}
/// Access the control block of the var.
///
/// Internal use only!
pub fn control_block(&self) -> &Arc<VarControlBlock> {
&self.control_block
}
}
/// Debug output a struct.
///
/// Note that this function does not print the state atomically.
/// If another thread modifies the datastructure at the same time, it may print an inconsistent state.
/// If you need an accurate view, that reflects current thread-local state, you can implement it easily yourself with
/// atomically.
///
/// Running `atomically` inside a running transaction panics. Therefore `fmt` uses
/// prints the state.
impl<T> Debug for TVar<T>
where
T: Any + Sync + Send + Clone,
T: Debug,
{
#[inline(never)]
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let x = self.read_atomic();
f.debug_struct("TVar").field("value", &x).finish()
}
}
#[test]
// Test if creating and reading a TVar works.
fn test_read_atomic() {
let var = TVar::new(42);
assert_eq!(42, var.read_atomic());
}
// More tests are in lib.rs.