fast_stm/
tvar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright 2015-2016 rust-stm Developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use parking_lot::{Mutex, RwLock};
use std::any::Any;
use std::cmp;
use std::fmt::{self, Debug};
use std::marker::PhantomData;
use std::sync::atomic::{self, AtomicUsize};
use std::sync::{Arc, Weak};

use super::result::StmResult;
use super::transaction::control_block::ControlBlock;
use super::Transaction;

/// `VarControlBlock` contains all the useful data for a `Var` while beeing the same type.
///
/// The control block is accessed from other threads directly whereas `Var`
/// is just a typesafe wrapper around it.
pub struct VarControlBlock {
    /// `waiting_threads` is a list of all waiting threads protected by a mutex.
    waiting_threads: Mutex<Vec<Weak<ControlBlock>>>,

    /// `dead_threads` is a counter for all dead threads.
    ///
    /// When there are many dead threads waiting for a change, but
    /// nobody changes the value, then an automatic collection is
    /// performed.
    dead_threads: AtomicUsize,

    /// The inner value of the Var.
    ///
    /// It can be shared through a Arc without copying it too often.
    ///
    /// The Arc is also used by the threads to detect changes.
    /// The value in it should not be changed or locked because
    /// that may cause multiple threads to block unforeseen as well as
    /// causing deadlocks.
    ///
    /// The shared reference is protected by a `RWLock` so that multiple
    /// threads can safely block it. This ensures consistency, without
    /// preventing other threads from accessing the values.
    ///
    /// Starvation may occur, if one thread wants to write-lock but others
    /// keep holding read-locks.
    pub value: RwLock<Arc<dyn Any + Send + Sync>>,
}

impl VarControlBlock {
    /// create a new empty `VarControlBlock`
    pub fn new<T>(val: T) -> Arc<VarControlBlock>
    where
        T: Any + Sync + Send,
    {
        let ctrl = VarControlBlock {
            waiting_threads: Mutex::new(Vec::new()),
            dead_threads: AtomicUsize::new(0),
            value: RwLock::new(Arc::new(val)),
        };
        Arc::new(ctrl)
    }

    /// Wake all threads that are waiting for this block.
    pub fn wake_all(&self) {
        // Atomically take all waiting threads from the value.
        let threads = {
            let mut guard = self.waiting_threads.lock();
            let inner: &mut Vec<_> = &mut guard;
            std::mem::take(inner)
        };

        // Take all, that are still alive.
        let threads = threads.iter().filter_map(Weak::upgrade);

        // Release all the semaphores to start the thread.
        for thread in threads {
            // Inform thread that this var has changed.
            thread.set_changed();
        }
    }

    /// Add another thread, that waits for mutations of `self`.
    pub fn wait(&self, thread: &Arc<ControlBlock>) {
        let mut guard = self.waiting_threads.lock();

        guard.push(Arc::downgrade(thread));
    }

    /// Mark another `StmControlBlock` as dead.
    ///
    /// If the count of dead control blocks is too high,
    /// perform a cleanup.
    /// This prevents masses of old `StmControlBlock` to
    /// pile up when a variable is often read but rarely written.
    pub fn set_dead(&self) {
        // Increase by one.
        let deads = self.dead_threads.fetch_add(1, atomic::Ordering::Relaxed);

        // If there are too many then cleanup.

        // There is a potential data race that may occure when
        // one thread reads the number and then operates on
        // outdated data, but no serious mistakes may happen.
        if deads >= 64 {
            let mut guard = self.waiting_threads.lock();
            self.dead_threads.store(0, atomic::Ordering::SeqCst);

            // Remove all dead ones. Possibly free up the memory.
            guard.retain(|t| t.upgrade().is_some());
        }
    }

    fn get_address(&self) -> usize {
        std::ptr::from_ref::<VarControlBlock>(self) as usize
    }
}

// Implement some operators so that VarControlBlocks can be sorted.

impl PartialEq for VarControlBlock {
    fn eq(&self, other: &Self) -> bool {
        self.get_address() == other.get_address()
    }
}

impl Eq for VarControlBlock {}

impl Ord for VarControlBlock {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.get_address().cmp(&other.get_address())
    }
}

impl PartialOrd for VarControlBlock {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        Some(self.cmp(other))
    }
}

/// A variable that can be used in a STM-Block
#[derive(Clone)]
pub struct TVar<T> {
    /// The control block is the inner of the variable.
    ///
    /// The rest of `TVar` is just the typesafe interface.
    control_block: Arc<VarControlBlock>,

    /// This marker is needed so that the variable can be used in a typesafe
    /// manner.
    _marker: PhantomData<T>,
}

impl<T> TVar<T>
where
    T: Any + Sync + Send + Clone,
{
    /// Create a new `TVar`.
    pub fn new(val: T) -> TVar<T> {
        TVar {
            control_block: VarControlBlock::new(val),
            _marker: PhantomData,
        }
    }

    #[allow(clippy::missing_panics_doc)]
    /// `read_atomic` reads a value atomically, without starting a transaction.
    ///
    /// It is semantically equivalent to
    ///
    /// ```
    /// # use fast_stm::*;
    ///
    /// let var = TVar::new(0);
    /// atomically(|trans| var.read(trans));
    /// ```
    ///
    /// but more efficient.
    ///
    /// `read_atomic` returns a clone of the value.
    pub fn read_atomic(&self) -> T {
        let val = self.read_ref_atomic();

        (&*val as &dyn Any)
            .downcast_ref::<T>()
            .expect("wrong type in Var<T>")
            .clone()
    }

    /// Read a value atomically but return a reference.
    ///
    /// This is mostly used internally, but can be useful in
    /// some cases, because `read_atomic` clones the
    /// inner value, which may be expensive.
    pub fn read_ref_atomic(&self) -> Arc<dyn Any + Send + Sync> {
        self.control_block.value.read().clone()
    }

    /// The normal way to access a var.
    ///
    /// It is equivalent to `transaction.read(&var)`, but more
    /// convenient.
    pub fn read(&self, transaction: &mut Transaction) -> StmResult<T> {
        transaction.read(self)
    }

    /// The normal way to write a var.
    ///
    /// It is equivalent to `transaction.write(&var, value)`, but more
    /// convenient.
    pub fn write(&self, transaction: &mut Transaction, value: T) -> StmResult<()> {
        transaction.write(self, value)
    }

    /// Modify the content of a `TVar` with the function f.
    ///
    /// ```
    /// # use fast_stm::*;
    ///
    ///
    /// let var = TVar::new(21);
    /// atomically(|trans|
    ///     var.modify(trans, |x| x*2)
    /// );
    ///
    /// assert_eq!(var.read_atomic(), 42);
    /// ```
    pub fn modify<F>(&self, transaction: &mut Transaction, f: F) -> StmResult<()>
    where
        F: FnOnce(T) -> T,
    {
        let old = self.read(transaction)?;
        self.write(transaction, f(old))
    }

    /// Replaces the value of a `TVar` with a new one, returning
    /// the old one.
    ///
    /// ```
    /// # use fast_stm::*;
    ///
    /// let var = TVar::new(0);
    /// let x = atomically(|trans|
    ///     var.replace(trans, 42)
    /// );
    ///
    /// assert_eq!(x, 0);
    /// assert_eq!(var.read_atomic(), 42);
    /// ```
    pub fn replace(&self, transaction: &mut Transaction, value: T) -> StmResult<T> {
        let old = self.read(transaction)?;
        self.write(transaction, value)?;
        Ok(old)
    }

    /// Check if two `TVar`s refer to the same position.
    pub fn ref_eq(this: &TVar<T>, other: &TVar<T>) -> bool {
        Arc::ptr_eq(&this.control_block, &other.control_block)
    }

    /// Access the control block of the var.
    ///
    /// Internal use only!
    pub fn control_block(&self) -> &Arc<VarControlBlock> {
        &self.control_block
    }
}

/// Debug output a struct.
///
/// Note that this function does not print the state atomically.
/// If another thread modifies the datastructure at the same time, it may print an inconsistent state.
/// If you need an accurate view, that reflects current thread-local state, you can implement it easily yourself with
/// atomically.
///
/// Running `atomically` inside a running transaction panics. Therefore `fmt` uses
/// prints the state.
impl<T> Debug for TVar<T>
where
    T: Any + Sync + Send + Clone,
    T: Debug,
{
    #[inline(never)]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        let x = self.read_atomic();
        f.debug_struct("TVar").field("value", &x).finish()
    }
}

#[test]
// Test if creating and reading a TVar works.
fn test_read_atomic() {
    let var = TVar::new(42);

    assert_eq!(42, var.read_atomic());
}

// More tests are in lib.rs.