fast_stm/transaction/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
pub mod control_block;
pub mod log_var;

use std::any::Any;
use std::cell::Cell;
use std::collections::btree_map::Entry;
use std::collections::BTreeMap;
use std::mem;
use std::sync::Arc;

use self::control_block::ControlBlock;
use self::log_var::LogVar;
use super::result::{StmError, StmResult};
use super::tvar::{TVar, VarControlBlock};

thread_local!(static TRANSACTION_RUNNING: Cell<bool> = const { Cell::new(false) });

/// `TransactionGuard` checks against nested STM calls.
///
/// Use guard, so that it correctly marks the Transaction as finished.
struct TransactionGuard;

impl TransactionGuard {
    pub fn new() -> TransactionGuard {
        TRANSACTION_RUNNING.with(|t| {
            assert!(!t.get(), "STM: Nested Transaction");
            t.set(true);
        });
        TransactionGuard
    }
}

impl Drop for TransactionGuard {
    fn drop(&mut self) {
        TRANSACTION_RUNNING.with(|t| {
            t.set(false);
        });
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TransactionControl {
    Retry,
    Abort,
}

/// Transaction tracks all the read and written variables.
///
/// It is used for checking vars, to ensure atomicity.
pub struct Transaction {
    /// Map of all vars that map the `VarControlBlock` of a var to a `LogVar`.
    /// The `VarControlBlock` is unique because it uses it's address for comparing.
    ///
    /// The logs need to be accessed in a order to prevend dead-locks on locking.
    vars: BTreeMap<Arc<VarControlBlock>, LogVar>,
}

impl Transaction {
    /// Create a new log.
    ///
    /// Normally you don't need to call this directly.
    /// Use `atomically` instead.
    fn new() -> Transaction {
        Transaction {
            vars: BTreeMap::new(),
        }
    }

    /// Run a function with a transaction.
    ///
    /// It is equivalent to `atomically`.
    pub fn with<T, F>(f: F) -> T
    where
        F: Fn(&mut Transaction) -> StmResult<T>,
    {
        match Transaction::with_control(|_| TransactionControl::Retry, f) {
            Some(t) => t,
            None => unreachable!(),
        }
    }

    /// Run a function with a transaction.
    ///
    /// `with_control` takes another control function, that
    /// can steer the control flow and possible terminate early.
    ///
    /// `control` can react to counters, timeouts or external inputs.
    ///
    /// It allows the user to fall back to another strategy, like a global lock
    /// in the case of too much contention.
    ///
    /// Please not, that the transaction may still infinitely wait for changes when `retry` is
    /// called and `control` does not abort.
    /// If you need a timeout, another thread should signal this through a [`TVar`].
    pub fn with_control<T, F, C>(mut control: C, f: F) -> Option<T>
    where
        F: Fn(&mut Transaction) -> StmResult<T>,
        C: FnMut(StmError) -> TransactionControl,
    {
        let _guard = TransactionGuard::new();

        // create a log guard for initializing and cleaning up
        // the log
        let mut transaction = Transaction::new();

        // loop until success
        loop {
            // run the computation
            match f(&mut transaction) {
                // on success exit loop
                Ok(t) => {
                    if transaction.commit() {
                        return Some(t);
                    }
                }

                Err(e) => {
                    // Check if the user wants to abort the transaction.
                    if let TransactionControl::Abort = control(e) {
                        return None;
                    }

                    // on retry wait for changes
                    if let StmError::Retry = e {
                        transaction.wait_for_change();
                    }
                }
            }

            // clear log before retrying computation
            transaction.clear();
        }
    }

    #[allow(clippy::needless_pass_by_value)]
    /// Perform a downcast on a var.
    fn downcast<T: Any + Clone>(var: Arc<dyn Any>) -> T {
        match var.downcast_ref::<T>() {
            Some(s) => s.clone(),
            None => unreachable!("TVar has wrong type"),
        }
    }

    /// Read a variable and return the value.
    ///
    /// The returned value is not always consistent with the current value of the var,
    /// but may be an outdated or or not yet commited value.
    ///
    /// The used code should be capable of handling inconsistent states
    /// without running into infinite loops.
    /// Just the commit of wrong values is prevented by STM.
    pub fn read<T: Send + Sync + Any + Clone>(&mut self, var: &TVar<T>) -> StmResult<T> {
        let ctrl = var.control_block().clone();
        // Check if the same var was written before.
        let value = match self.vars.entry(ctrl) {
            // If the variable has been accessed before, then load that value.
            Entry::Occupied(mut entry) => entry.get_mut().read(),

            // Else load the variable statically.
            Entry::Vacant(entry) => {
                // Read the value from the var.
                let value = var.read_ref_atomic();

                // Store in in an entry.
                entry.insert(LogVar::Read(value.clone()));
                value
            }
        };

        // For now always succeeds, but that may change later.
        Ok(Transaction::downcast(value))
    }

    /// Write a variable.
    ///
    /// The write is not immediately visible to other threads,
    /// but atomically commited at the end of the computation.
    pub fn write<T: Any + Send + Sync + Clone>(
        &mut self,
        var: &TVar<T>,
        value: T,
    ) -> StmResult<()> {
        // box the value
        let boxed = Arc::new(value);

        // new control block
        let ctrl = var.control_block().clone();
        // update or create new entry
        match self.vars.entry(ctrl) {
            Entry::Occupied(mut entry) => entry.get_mut().write(boxed),
            Entry::Vacant(entry) => {
                entry.insert(LogVar::Write(boxed));
            }
        }

        // For now always succeeds, but that may change later.
        Ok(())
    }

    /// Combine two calculations. When one blocks with `retry`,
    /// run the other, but don't commit the changes in the first.
    ///
    /// If both block, `Transaction::or` still waits for `TVar`s in both functions.
    /// Use `Transaction::or` instead of handling errors directly with the `Result::or`.
    /// The later does not handle all the blocking correctly.
    pub fn or<T, F1, F2>(&mut self, first: F1, second: F2) -> StmResult<T>
    where
        F1: Fn(&mut Transaction) -> StmResult<T>,
        F2: Fn(&mut Transaction) -> StmResult<T>,
    {
        // Create a backup of the log.
        let mut copy = Transaction {
            vars: self.vars.clone(),
        };

        // Run the first computation.
        let f = first(self);

        match f {
            // Run other on manual retry call.
            Err(StmError::Retry) => {
                // swap, so that self is the current run
                mem::swap(self, &mut copy);

                // Run other action.
                let s = second(self);

                // If both called retry then exit.
                match s {
                    Err(StmError::Failure) => Err(StmError::Failure),
                    s => {
                        self.combine(copy);
                        s
                    }
                }
            }

            // Return success and failure directly
            x => x,
        }
    }

    /// Combine two logs into a single log, to allow waiting for all reads.
    fn combine(&mut self, other: Transaction) {
        // combine reads
        for (var, value) in other.vars {
            // only insert new values
            if let Some(value) = value.obsolete() {
                self.vars.entry(var).or_insert(value);
            }
        }
    }

    /// Clear the log's data.
    ///
    /// This should be used before redoing a computation, but
    /// nowhere else.
    fn clear(&mut self) {
        self.vars.clear();
    }

    /// Wait for any variable to change,
    /// because the change may lead to a new calculation result.
    fn wait_for_change(&mut self) {
        // Create control block for waiting.
        let ctrl = Arc::new(ControlBlock::new());

        #[allow(clippy::mutable_key_type)]
        let vars = std::mem::take(&mut self.vars);
        let mut reads = Vec::with_capacity(self.vars.len());

        let blocking = vars
            .into_iter()
            .filter_map(|(a, b)| b.into_read_value().map(|b| (a, b)))
            // Check for consistency.
            .all(|(var, value)| {
                var.wait(&ctrl);
                let x = {
                    // Take read lock and read value.
                    let guard = var.value.read();
                    Arc::ptr_eq(&value, &guard)
                };
                reads.push(var);
                x
            });

        // If no var has changed, then block.
        if blocking {
            // Propably wait until one var has changed.
            ctrl.wait();
        }

        // Let others know that ctrl is dead.
        // It does not matter, if we set too many
        // to dead since it may slightly reduce performance
        // but not break the semantics.
        for var in &reads {
            var.set_dead();
        }
    }

    /// Write the log back to the variables.
    ///
    /// Return true for success and false, if a read var has changed
    fn commit(&mut self) -> bool {
        // Use two phase locking for safely writing data back to the vars.

        // First phase: acquire locks.
        // Check for consistency of all the reads and perform
        // an early return if something is not consistent.

        // Created arrays for storing the locks
        // vector of locks.
        let mut read_vec = Vec::with_capacity(self.vars.len());

        // vector of tuple (value, lock)
        let mut write_vec = Vec::with_capacity(self.vars.len());

        // vector of written variables
        let mut written = Vec::with_capacity(self.vars.len());

        for (var, value) in &self.vars {
            // lock the variable and read the value

            match *value {
                // We need to take a write lock.
                LogVar::Write(ref w) | LogVar::ReadObsoleteWrite(_, ref w) => {
                    // take write lock
                    let lock = var.value.write();
                    // add all data to the vector
                    write_vec.push((w, lock));
                    written.push(var);
                }

                // We need to check for consistency and
                // take a write lock.
                LogVar::ReadWrite(ref original, ref w) => {
                    // take write lock
                    let lock = var.value.write();

                    if !Arc::ptr_eq(&lock, original) {
                        return false;
                    }
                    // add all data to the vector
                    write_vec.push((w, lock));
                    written.push(var);
                }
                // Nothing to do. ReadObsolete is only needed for blocking, not
                // for consistency checks.
                LogVar::ReadObsolete(_) => {}
                // Take read lock and check for consistency.
                LogVar::Read(ref original) => {
                    // Take a read lock.
                    let lock = var.value.read();

                    if !Arc::ptr_eq(&lock, original) {
                        return false;
                    }

                    read_vec.push(lock);
                }
            }
        }

        // Second phase: write back and release

        // Release the reads first.
        // This allows other threads to continue quickly.
        drop(read_vec);

        for (value, mut lock) in write_vec {
            // Commit value.
            *lock = value.clone();
        }

        for var in written {
            // Unblock all threads waiting for it.
            var.wake_all();
        }

        // Commit succeded.
        true
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[test]
    fn read() {
        let mut log = Transaction::new();
        let var = TVar::new(vec![1, 2, 3, 4]);

        // The variable can be read.
        assert_eq!(&*log.read(&var).unwrap(), &[1, 2, 3, 4]);
    }

    #[test]
    fn write_read() {
        let mut log = Transaction::new();
        let var = TVar::new(vec![1, 2]);

        log.write(&var, vec![1, 2, 3, 4]).unwrap();

        // Consecutive reads get the updated version.
        assert_eq!(log.read(&var).unwrap(), [1, 2, 3, 4]);

        // The original value is still preserved.
        assert_eq!(var.read_atomic(), [1, 2]);
    }

    #[test]
    fn transaction_simple() {
        let x = Transaction::with(|_| Ok(42));
        assert_eq!(x, 42);
    }

    #[test]
    fn transaction_read() {
        let read = TVar::new(42);

        let x = Transaction::with(|trans| read.read(trans));

        assert_eq!(x, 42);
    }

    /// Run a transaction with a control function, that always aborts.
    /// The transaction still tries to run a single time and should successfully
    /// commit in this test.
    #[test]
    fn transaction_with_control_abort_on_single_run() {
        let read = TVar::new(42);

        let x = Transaction::with_control(|_| TransactionControl::Abort, |tx| read.read(tx));

        assert_eq!(x, Some(42));
    }

    /// Run a transaction with a control function, that always aborts.
    /// The transaction retries infinitely often. The control function will abort this loop.
    #[test]
    fn transaction_with_control_abort_on_retry() {
        let x: Option<i32> =
            Transaction::with_control(|_| TransactionControl::Abort, |_| Err(StmError::Retry));

        assert_eq!(x, None);
    }

    #[test]
    fn transaction_write() {
        let write = TVar::new(42);

        Transaction::with(|trans| write.write(trans, 0));

        assert_eq!(write.read_atomic(), 0);
    }

    #[test]
    fn transaction_copy() {
        let read = TVar::new(42);
        let write = TVar::new(0);

        Transaction::with(|trans| {
            let r = read.read(trans)?;
            write.write(trans, r)
        });

        assert_eq!(write.read_atomic(), 42);
    }

    // Dat name. seriously?
    #[test]
    fn transaction_control_stuff() {
        let read = TVar::new(42);
        let write = TVar::new(0);

        Transaction::with(|trans| {
            let r = read.read(trans)?;
            write.write(trans, r)
        });

        assert_eq!(write.read_atomic(), 42);
    }

    /// Test if nested transactions are correctly detected.
    #[test]
    #[should_panic]
    fn transaction_nested_fail() {
        Transaction::with(|_| {
            Transaction::with(|_| Ok(42));
            Ok(1)
        });
    }
}