fast_stm/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//! This library implements
//! [software transactional memory](https://en.wikipedia.org/wiki/Software_transactional_memory),
//! often abbreviated with STM.
//!
//! It is designed closely to haskells STM library. Read Simon Marlow's
//! *Parallel and Concurrent Programming in Haskell*
//! for more info. Especially the chapter about
//! Performance is also important for using STM in rust.
//!
//! With locks the sequential composition of two
//! two threadsafe actions is no longer threadsafe because
//! other threads may interfer in between of these actions.
//! Applying a third lock to protect both may lead to common sources of errors
//! like deadlocks or race conditions.
//!
//! Unlike locks Software transactional memory is composable.
//! It is typically implemented by writing all read and write
//! operations in a log. When the action has finished and
//! all the used `TVar`s are consistent, the writes are commited as
//! a single atomic operation.
//! Otherwise the computation repeats. This may lead to starvation,
//! but avoids common sources of bugs.
//!
//! Panicing within STM does not poison the `TVar`s. STM ensures consistency by
//! never committing on panic.
//!
//! # Usage
//!
//! You should only use the functions that are transaction-safe.
//! Transaction-safe functions don't have side effects, except those provided by `TVar`.
//! Mutexes and other blocking mechanisms are especially dangerous, because they can
//! interfere with the internal locking scheme of the transaction and therefore
//! cause deadlocks.
//!
//! Note, that Transaction-safety does *not* mean safety in the rust sense, but is a
//! subset of allowed behavior. Even if code is not transaction-safe, no segmentation
//! faults will happen.
//!
//! You can run the top-level atomic operation by calling `atomically`.
//!
//!
//! ```
//! # use fast_stm::atomically;
//! atomically(|trans| {
//!     // some action
//!     // return value as `Result`, for example
//!     Ok(42)
//! });
//! ```
//!
//! Nested calls to `atomically` are not allowed. A run-time check prevents this.
//! Instead of using atomically internally, add a `&mut Transaction` parameter and
//! return `StmResult`.
//!
//! Use ? on `StmResult`, to propagate a transaction error through the system.
//! Do not handle the error yourself.
//!
//! ```
//! # use fast_stm::{atomically, TVar};
//! let var = TVar::new(0);
//!
//! let x = atomically(|trans| {
//!     var.write(trans, 42)?; // Pass failure to parent.
//!     var.read(trans) // Return the value saved in var.
//! });
//!
//! println!("var = {}", x);
//! // var = 42
//!
//! ```
//!
//! # Transaction safety
//!
//! Software transactional memory is completely safe in the rust sense, so
//! undefined behavior will never occur.
//! Still there are multiple rules that
//! you should obey when dealing with software transactional memory.
//!
//! * Don't run code with side effects, especially no IO-code.
//!   Transactions repeat in failure cases. Using IO would repeat this IO-code.
//!   Return a closure if you have to.
//! * Don't handle `StmResult` yourself.
//!   Use `Transaction::or` to combine alternative paths and `optionally` to check if an inner
//!   function has failed. Always use `?` and
//!   never ignore a `StmResult`.
//! * Don't run `atomically` inside of another. `atomically` is designed to have side effects
//!   and will therefore break transaction safety.
//!   Nested calls are detected at runtime and handled with panicking.
//!   When you use STM in the inner of a function, then
//!   express it in the public interface, by taking `&mut Transaction` as parameter and
//!   returning `StmResult<T>`. Callers can safely compose it into
//!   larger blocks.
//! * Don't mix locks and transactions. Your code will easily deadlock or slow
//!   down unpredictably.
//! * Don't use inner mutability to change the content of a `TVar`.
//!
//! Panicking in a transaction is transaction-safe. The transaction aborts and
//! all changes are discarded. No poisoning or half written transactions happen.
//!
//! # Speed
//!
//! Generally keep your atomic blocks as small as possible, because
//! the more time you spend, the more likely it is, to collide with
//! other threads. For STM, reading `TVar`s is quite slow, because it
//! needs to look them up in the log every time.
//! Every used `TVar` increases the chance of collisions. Therefore you should
//! keep the amount of accessed variables as low as needed.
//!

// Extra linting with exceptions
#![warn(clippy::pedantic)]
#![allow(clippy::missing_errors_doc)]
#![allow(clippy::module_name_repetitions)]
#![allow(clippy::must_use_candidate)]
#![allow(clippy::should_panic_without_expect)]

extern crate parking_lot;

mod result;
mod transaction;
mod tvar;

#[cfg(test)]
mod test;

pub use result::*;
pub use transaction::Transaction;
pub use transaction::TransactionControl;
pub use tvar::TVar;

#[inline]
/// Call `retry` to abort an operation and run the whole transaction again.
///
/// Semantically `retry` allows spin-lock-like behavior, but the library
/// blocks until one of the used `TVar`s has changed, to keep CPU-usage low.
///
/// `Transaction::or` allows to define alternatives. If the first function
/// wants to retry, then the second one has a chance to run.
///
/// # Examples
///
/// ```no_run
/// # use fast_stm::*;
/// let infinite_retry: i32 = atomically(|_| retry());
/// ```
pub fn retry<T>() -> StmResult<T> {
    Err(StmError::Retry)
}

/// Run a function atomically by using Software Transactional Memory.
/// It calls to `Transaction::with` internally, but is more explicit.
pub fn atomically<T, F>(f: F) -> T
where
    F: Fn(&mut Transaction) -> StmResult<T>,
{
    Transaction::with(f)
}

#[inline]
/// Unwrap `Option` or call retry if it is `None`.
///
/// `optionally` is the inverse of `unwrap_or_retry`.
///
/// # Example
///
/// ```
/// # use fast_stm::*;
/// let x = TVar::new(Some(42));
///
/// atomically(|tx| {
///         let inner = unwrap_or_retry(x.read(tx)?)?;
///         assert_eq!(inner, 42); // inner is always 42.
///         Ok(inner)
///     }
/// );
/// ```
pub fn unwrap_or_retry<T>(option: Option<T>) -> StmResult<T> {
    match option {
        Some(x) => Ok(x),
        None => retry(),
    }
}

#[inline]
/// Retry until `cond` is true.
///
/// # Example
///
/// ```
/// # use fast_stm::*;
/// let var = TVar::new(42);
///
/// let x = atomically(|tx| {
///     let v = var.read(tx)?;
///     guard(v==42)?;
///     // v is now always 42.
///     Ok(v)
/// });
/// assert_eq!(x, 42);
/// ```
pub fn guard(cond: bool) -> StmResult<()> {
    if cond {
        Ok(())
    } else {
        retry()
    }
}

#[inline]
/// Optionally run a transaction `f`. If `f` fails with a `retry()`, it does
/// not cancel the whole transaction, but returns `None`.
///
/// Note that `optionally` does not always recover the function, if
/// inconsistencies where found.
///
/// `unwrap_or_retry` is the inverse of `optionally`.
///
/// # Example
///
/// ```
/// # use fast_stm::*;
/// let x:Option<i32> = atomically(|tx|
///     optionally(tx, |_| retry()));
/// assert_eq!(x, None);
/// ```
pub fn optionally<T, F>(tx: &mut Transaction, f: F) -> StmResult<Option<T>>
where
    F: Fn(&mut Transaction) -> StmResult<T>,
{
    tx.or(|t| f(t).map(Some), |_| Ok(None))
}

#[cfg(test)]
mod test_lib {
    use super::*;

    #[test]
    fn infinite_retry() {
        let terminated = test::terminates(300, || {
            let _infinite_retry: i32 = atomically(|_| retry());
        });
        assert!(!terminated);
    }

    #[test]
    fn stm_nested() {
        let var = TVar::new(0);

        let x = atomically(|tx| {
            var.write(tx, 42)?;
            var.read(tx)
        });

        assert_eq!(42, x);
    }

    /// Run multiple threads.
    ///
    /// Thread 1: Read a var, block until it is not 0 and then
    /// return that value.
    ///
    /// Thread 2: Wait a bit. Then write a value.
    ///
    /// Check if Thread 1 is woken up correctly and then check for
    /// correctness.
    #[test]
    fn threaded() {
        use std::thread;
        use std::time::Duration;

        let var = TVar::new(0);
        // Clone for other thread.
        let varc = var.clone();

        let x = test::async_test(
            800,
            move || {
                atomically(|tx| {
                    let x = varc.read(tx)?;
                    if x == 0 {
                        retry()
                    } else {
                        Ok(x)
                    }
                })
            },
            || {
                thread::sleep(Duration::from_millis(100));

                atomically(|tx| var.write(tx, 42));
            },
        )
        .unwrap();

        assert_eq!(42, x);
    }

    /// test if a STM calculation is rerun when a Var changes while executing
    #[test]
    fn read_write_interfere() {
        use std::thread;
        use std::time::Duration;

        // create var
        let var = TVar::new(0);
        let varc = var.clone(); // Clone for other thread.

        // spawn a thread
        let t = thread::spawn(move || {
            atomically(|tx| {
                // read the var
                let x = varc.read(tx)?;
                // ensure that x varc changes in between
                thread::sleep(Duration::from_millis(500));

                // write back modified data this should only
                // happen when the value has not changed
                varc.write(tx, x + 10)
            });
        });

        // ensure that the thread has started and already read the var
        thread::sleep(Duration::from_millis(100));

        // now change it
        atomically(|tx| var.write(tx, 32));

        // finish and compare
        let _ = t.join();
        assert_eq!(42, var.read_atomic());
    }

    #[test]
    fn or_simple() {
        let var = TVar::new(42);

        let x = atomically(|tx| tx.or(|_| retry(), |tx| var.read(tx)));

        assert_eq!(x, 42);
    }

    /// A variable should not be written,
    /// when another branch was taken
    #[test]
    fn or_nocommit() {
        let var = TVar::new(42);

        let x = atomically(|tx| {
            tx.or(
                |tx| {
                    var.write(tx, 23)?;
                    retry()
                },
                |tx| var.read(tx),
            )
        });

        assert_eq!(x, 42);
    }

    #[test]
    fn or_nested_first() {
        let var = TVar::new(42);

        let x = atomically(|tx| tx.or(|tx| tx.or(|_| retry(), |_| retry()), |tx| var.read(tx)));

        assert_eq!(x, 42);
    }

    #[test]
    fn or_nested_second() {
        let var = TVar::new(42);

        let x = atomically(|tx| tx.or(|_| retry(), |t| t.or(|t2| var.read(t2), |_| retry())));

        assert_eq!(x, 42);
    }

    #[test]
    fn unwrap_some() {
        let x = Some(42);
        let y = atomically(|_| unwrap_or_retry(x));
        assert_eq!(y, 42);
    }

    #[test]
    fn unwrap_none() {
        let x: Option<i32> = None;
        assert_eq!(unwrap_or_retry(x), retry());
    }

    #[test]
    fn guard_true() {
        let x = guard(true);
        assert_eq!(x, Ok(()));
    }

    #[test]
    fn guard_false() {
        let x = guard(false);
        assert_eq!(x, retry());
    }

    #[test]
    fn optionally_succeed() {
        let x = atomically(|t| optionally(t, |_| Ok(42)));
        assert_eq!(x, Some(42));
    }

    #[test]
    fn optionally_fail() {
        let x: Option<i32> = atomically(|t| optionally(t, |_| retry()));
        assert_eq!(x, None);
    }
}